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Abstract

Energy costs contribute significantly to the total cost of operation for cloud and
edge infrastructure providers. Both conventional (Voltage and Frequency Scaling)
and more aggressive (undervolting, overclocking) techniques can be applied to
reduce the energy footprint of the infrastructure and thus the cost of the opera-
tor. However, these techniques may affect the quality of service (QoS), potentially
activating service level agreement (SLA) violation penalties for the provider. In
this paper we model and study this tradeoff. We find that undervolting is the most
effective of the three techniques in reducing infrastructure operation cost. We iden-
tify optimal operating points, and we study the effect of different parameters, such
as the severity of SLA penalties, the length of the job and the existence of error
protection mechanisms, on the optimal operating point and the extent of potential
benefits.

1 Introduction

Minimizing energy consumption has become a critical concern in computing, due to
technical, economic and environmental reasons. For cloud/datacenter deployments,
energy corresponds to a significant percentage of the operation cost and the environ-
mental footprint of the facility. At the same time, power dissipation is the main factor
limiting the denser packing of servers. In edge deployments, technical constraints often
introduce even tighter power and energy limitations.

Hardware manufacturers have introduced Voltage and Frequency Scaling (VES)
[10] and more recently power throttling as effective mechanisms of power manage-
ment. VFS enables the concurrent manipulation of supply voltage (V) and operating
frequency (f) among different nominal (V,4, f) tuples. VFS can result to significant
power savings, which however come at the cost of lowering the frequency (and thus



typically performance) of the CPU. Due to the associated performance loss in compu-
tational workloads, VFS does not necessarily reduce the energy footprint of the work-
load.

Another, more aggressive, power reduction technique is voltage overscaling (un-
dervolting) [2]. In this case, the CPU is supplied with lower voltage than the nomi-
nal for the respective frequency. This technique relies on the fact that manufacturers
have introduced extensive guardbands to their chips to guarantee stable operation un-
der adverse — and very improbable — combinations of conditions. A complementary
approach is frequency overscaling (overclocking). In this case the chip is clocked at
a frequency higher than the nominal for the respective supply voltage. Overclock-
ing increases power consumption, however at the same time it increases performance.
Therefore, it still presents opportunities for energy savings.

All three techniques may have the potential to affect the stability of the system,
whereas two of them (VFS and overclocking) also affect the performance. Voltage
and frequency overscaling make the processor more vulnerable to timing errors. VES
can also affect system reliability, although in a less profound way; operating to lower
voltage/frequency steps makes CPU cells more vulnerable to lower energy transient
upsets, like the effects of cosmic particles. As a result, the quest to reduce energy
consumption may affect the quality of service (QoS) provided by the system. Cloud
and edge operators are contractually bound to a certain QoS to their users, through
Service Level Agreements (SLAs) [6]. Violation of the SLA is typically associated to
penalties for the operator, reducing its profit margins.

In this paper we follow a modeling approach to evaluate the feasibility and the asso-
ciated tradeoffs, and try to identify configurations for maximizing the profit margins of
Cloud and Edge resources operators by applying the aforementioned techniques. For
all three approaches we estimate the cost for the operator due to energy consumption
and potential SLA violation penalties and study its sensitivity to different parameters.
To the best of our knowledge this is the first effort to study the operation of edge / cloud
nodes outside nominal configuration from a cost minimization perspective.

The rest of the paper is organized as follows: Section 2 introduces the cost es-
timation model for each of the three aforementioned techniques. Section 3 applies
the models on an assumed edge/cloud setup and evaluates opportunities and tradeoffs.
Section 4 outlines related work. Finally, Section 5 concludes the article.

2  Cost Modeling and Minimization

This section introduces the models that estimate the operational cost for the cloud/edge
provider due to the energy and SLA violation penalties. In order to reduce energy we
use both conventional VFS and the more aggressive reduction of voltage and frequency
safety margins introduced by hardware manufacturers.

2.1 Assumptions

We try to minimize energy costs by reducing the voltage beyond the nominal point
for the respective frequency (undervolting), increasing the frequency (and thus the per-



Table 1: Summary of variables and parameters

Variable Description

d Constant. Failure sensitivity to frequency scaling (within nominal range)

delay Task execution delay over contractual (SLA) agreement

C Constant. Average switching capacitance of the processor

Epmax Energy consumption at highest operating point

E. Expected energy consumption when considering potential failures

Ey Energy consumption at a (Vy, f) operating point

Smax Constant. Processor frequency at the highest performing nominal operating point
Smin Constant. Processor frequency at the lowest performing nominal operating point
fx Processor operating frequency

JPoFF Constant. Frequency at the Point of First Failure

MTTF Mean time to failure

numiyg Number of instructions of the task

Py aric Processor static power

Pfail Failure probability

Priceenergy | Constant. Energy cost per Joule

pricey, Constant. Price per VM per time unit

W fraction Fraction of the task that was executed before a failure

tmax Task execution time at the highest performing nominal operating point

te Expected task execution time when considering potential failures

ty Task execution time at a (Vy, fy) operating point

Vinax Constant. Processor supply voltage at the highest performing nominal operating point
VeoFF Constant. Processor supply voltage at the Point of First Failure

Vin Constant. Processor threshold voltage

Vi Processor supply voltage

[0 Constant. Quantifies part sensitivity to undervolting/overclocking (linear part)

B Constant. Controls the relation between nominal voltage and the respective frequency
Y Constant. Quantifies part sensitivity to undervolting/overclocking (exponential part)
K Intensity of SLA violation penalty wrt. to user paid cost for the service

A Failure rate

Ao Constant. Failure rate at the highest performing nominal operating point

formance) of the processor beyond the nominal point for the respective voltage (over-
clocking), or by concurrently varying voltage and frequency, however at nominal (V,
/) points (VES).

Energy cost is assumed to be constant (does not vary in time). We consider a
cloud/edge deployment consisting of a homogeneous set of compute nodes both in
terms of resources and inherent resilience.

Each task has an a priori known lifetime. For the sake of simplicity we consider
errors to manifest as task failures/crashes (we do not consider SDCs), therefore error
detection does not incur extra cost. In case of a failure, the whole task is re-executed at
highest nominal V4, finax) point.

Table 1 summarizes the constants and variables we use in the models.



2.2 SLA Violation Penalty

Cloud/edge providers are contractually bound (SLA) to provide a certain QoS. If this
QoS is not met, they need to compensate the customer according to the terms of the
SLA. We assume that the main QoS metric is whether a task is executed within a
deadline. We adopt a model [6] which linearly correlates SLA violation penalty with
the extent of delay, after the deadline, of task execution.

More specifically, Eq. (1) quantifies the penalty where delay is the additional time
required for execution after the deadline and price,,, is the cost paid by the customer
for the execution of each VM per time unit. Finally, K is a constant specified in the
SLA which connects the compensation penalty to the price paid by the customer for
the service. Higher values of k are beneficial for the provider and vice versa.

delay * price,,

Ity= ————" 1
penalty . (1

In order to calculate the delay, we need both the terms of the SLA and the expected
execution time (z,) of each task when executed under the control of each of three en-
ergy reduction mechanisms. We assume that agreed deadline specified in the SLA is
based on the execution of the task at the highest performing nominal operating point
(Vinaxs fmax) plus some slack.

2.3 Error Modeling

The failure probability due to voltage/frequency (over)scaling follows an exponential
distribution [4]. Eq. (2) quantifies this probability. ¢, is the lifetime of the task and
MTTF is the mean time to failure.

Prai =1 "/MTTE 6)

MTTEF can be calculated as the inverse of the failure rate A: MTTF (MTTF = %).
In the next sections we will discuss in further detail how A is estimated for each of the
three energy reduction methodologies we study.

When MTTF is relatively large compared to ¢,, one could statistically assume that
failures happen on average in the middle of task lifetime. However, this is not neces-
sarily true as the order of MTTF approaches t,, which is often the case as we move to
less safe operating configurations. In this case, the fraction of the task (*w fyqacrion) that
had been executed before the failure occurred and will thus have to be re-executed is
given by Eq. (3) [3].

MTTF 1

W fraction = t 1— etx/MTTF (3)

2.4 Energy Consumption Modeling

V, and f, are possible operating voltage and frequency settings,respectively, of the
processor, not necessarily corresponding to a nominal operating point. The supply
voltage and the respective frequency at the highest performing nominal operating point



are Viuqy and f.. When a task is re-executed due to a failure, we greedily opt to do
so at the (Viuax, fmax) Operating point in order run the task at the maximum system
performance and thus minimize the probability of an SLA violation.

Energy consumption Ey on a (Vy, f;) configuration is given by Eq. (4),

Ex = (Cvxzfx + Pstatic)tx (4)

where C is the average switching capacitance of the processor. The first term (CV?2 f;)
in the parenthesis corresponds to the dynamic power of the processor, Py ;. is its static
power and ¢, is the execution time of the task when the processor is clocked at a fre-
quency equal to f;, for the case where no failures occur. Assuming CPI does not
significantly change with clock frequency, which can be expected to be the case unless
the task is memory intensive with bad cache locality, ¢, can be calculated by Eq. (5):

_ numys x CPI

TR
where num,; is the total number of instructions executed by the task.
The expected energy consumption E, for the execution of a task at an operating
point (Vy, t,) is calculated by Eq. (6):

&)

E,= (l - pfail)Ex + Pfail (erractionEx + Emax)a W fraction < 1 (6)
where p . is the probability of failure of the task when executed at the specific config-
uration. The first term of the equation ((1 — p i) Ey) corresponds to the contribution to
the average expected energy E, of executions where a failure did not occur. The second
term quantifies the energy contribution of task executions which resulted to failure after
a percentage equal to rw yacrion Of the task was executed. In this case, the task needs
to be re-executed at the nominal (V;,4y, finax) configuration, consuming E,,,, additional
energy.

2.5 Energy Reduction Methodologies

This section discusses the three models that estimate the energy consumption of the
tasks. We estimate the failure rate (1) and expected execution time (¢.) for each model.
Finally, we estimate the cost of the energy according to Eq. (7), where pricecyergy 1s
the energy cost (per Joule).

energycoss = Ee * priceenergy @)

2.5.1 Expected Energy Consumption - Voltage and Frequency Scaling (VFS model)

In VFS we concurrently manipulate frequency and voltage, however the processor al-
ways operates at nominal (Vy, fy) points. We calculate the frequency f, corresponding
to each voltage level V, using Eq. (8) [16]. B is a CPU model-specific constant and V;;,
is the threshold voltage.

(Vx - Vth)2

V. ®)

fx:.B



We also estimate the failure rate according to Eq. (9), where Ay is the failure rate
at maximum nominal performance operating point, d reflects the hardware proneness
to failure when scaling voltage and frequency, and f,,.x and fy,;, are the highest and
lowest nominal frequencies respectively.

. 2
d(fmax—B(Vx—2Vy,+ %)

2' — 10 e fmax—Finin (9)

In VFS, error rates are correlated to the operating voltage and frequency, as in lower
power/performance operating points circuits are more prone to transient faults due to
lower-energy upsets (such as cosmic particles).

Finally, we have to calculate the expected execution time #, according to Eq. (10).
Given that we change frequency, the execution time is directly affected. We use ¢, to
represent the execution time at operating point (V,, f;). If a failure did not occur, the
first term (¢,) provides the execution time of the task. However, if a failure occurred the
first two terms estimate the execution time before the failure, while the third estimates
the additional time that is required for re-execution (at the highest nominal operating
point).

le=1x— pfail(] - erraction)tx ~+ Ptaittmax, YW fraction < 1 (10)

2.5.2 Expected Energy Consumption - Voltage Scaling (VS model)

In this case, we reduce voltage while clocking the processor at the highest nominal
frequency. We estimate the failure rate using Eq. (11) [14], where Vp,rF is the volt-
age corresponding to the Point of First Failure (PoFF) [S] and o and Y are constants
we obtain by the data provided in [1] and [5]. The PoFF corresponds to the point at
which the error rate equals 1 error every 10 million cycles. Beyond the PoFF error
rate increases exponentially with the decrease of voltage [5], [1]. Timing errors are the
dominant cause of failures when undervolting.

A = o 107Va—Veorr) an

The execution time of the task is #,,4x for any V,, as we do not change the frequency
of the processor. Eq. (12) estimates the expected execution time and consists of two
terms. The first term corresponds to the execution time at highest nominal operating
point while the second one is the fraction of the task that was executed before the
failure, should a failure occur. Only the first term contributes to execution time if a
failure did not occur.

te = tnax + Pfail™W fractiontmax, "W fraction < 1 (12)

2.5.3 Expected Energy Consumption - Frequency Scaling (FS model)

We now increase the frequency of the processor beyond f;,.c, While keeping voltage
at the maximum nominal level V,,,,. The model is similar with the VS model. The
mechanism of failures is also similar. However, in this case we estimate the failure rate



using Eq. (13) in terms of frequency, instead of voltage, and fp,rF is the frequency
corresponding to the Point of First Failure.

A = q 10" rorr—1x) (13)

The expected execution time of the task can be calculated using Eq. (10).

2.6 Total cost reduction

We calculate the cost for the provider as the cost of energy plus the potential SLA
violation penalty, as summarized by Eq. (14).

cost = energycoss + penalty (14)

We estimate the cost at any possible (Vy, f;) point for each of the three mecha-
nisms and compare it with the cost when executing at the highest performing nominal
operating point (Viax, fimax)-

3 Evaluation

For the evaluation of our models, we assume a processor clocked at 3.7 GHz (f;4x)
with highest nominal voltage 1.06 V. We also used the amazon pricing list! to select a
realistic price for the VMs. More specifically, we chose Ireland as the region and the
c4.xlarge VM type, which is compute optimized. The resulting VM cost for the client
is 0.226%/hour. The energy cost for the provider is 0.07$/KWh [9].

We assume one task per VM and experiment with tasks with different execution
times (1 second, 10 seconds, 100 seconds) and various values for k¥ (1, 2, 4). Moreover,
we quantify the effects of protection mechanisms [14] which manage to identify and
mask a percentage of sporadic faults.

For each model, we illustrate three figures. The leftmost ones represent the operator
cost reduction which comes from the reduced energy consumption only, for tasks with
different execution times. The figures in the middle quantify operator cost reduction
due to reduced energy consumption, however also considering the potential penalties
that need to be paid to the user due to SLA violations. We use tasks with an execution
time of 100 seconds and we experiment with different values of k. Finally, the leftmost
figures illustrate the effect of fault protection/masking mechanisms to operator cost
reduction. Again we assume tasks executing for 100 seconds. We also fix k¥ to 4. In
all cases, the baseline operator cost is when executing the highest performing nominal
operating point (Vqyv, fmax). Higher values in the vertical axis are better (correspond
to higher cost reduction).

Comparing the three energy models, undervolting (VS) results to the highest cost
reduction (13.31 % on average for the different scenarios depicted in Figure 1). VFS, as
expected, is not very efficient with computational intensive tasks. It can only exploit the
deadline slack over #,,,, to identify a nominal point with slightly lower energy footprint.
However benefits are marginal as very soon the slack is consumed and SLA violation

Uhttps://aws.amazon.com/ec2/pricing/



penalties outweigh any energy cost reduction. Overclocking (FS) has also limited effect
on operator cost. It improves performance, thus reduces execution time, however at
the same time it also increases power consumption. Although it is not effective in
reducing cost, overclocking can improve operator profit as jobs leave the system faster,
making it available to execute additional jobs and thus generate additional income for
the operator. This is not evident in our diagrams, as they focus solely on the reduction
of costs.

From Figures 1 and 2 it is obvious that as we approach the point of first failure
(Vporr = 0.901V and fp,rr = 4.2GHZ respectively) massive errors appear and there-
fore the system operates at a non cost-effective configuration. The energy consumption
increases due to failed tasks which are re-executed at the (V;ay, fimax), after having ear-
lier executed for some time in the undervolted (or overclocked) configuration. As we
move to more aggressive voltage and frequency settings respectively, the cost stabilizes
to the cost of a (Vjuax, finax) €Xecution, as the error rate is too high, tasks fail almost im-
mediately and the total cost of execution essentially equals that of the re-execution at
the highest performing nominal operating point (should the system overall survive the
faults). It is clear that the goal of aggressive energy reduction mechanisms, such as
VS and FS, should be to approach the PoFF, without risking to reach it. As a matter
of fact, as the reader can observe in the leftmost figures, the optimal operating point
corresponds, due to the cost of re-executions, to higher voltages (0.947 — 0.967 V) than
Veorr and to lower frequencies (3.98 — 4.04 GHz) than fp,rr for undervolting and
overclocking respectively.

The middle figures depict the effect of SLA violation penalties to cost reduction.
We assume the deadline of the task includes a 10 % slack over its expected execution
time at the highest performing nominal operating point (). For this slack, we ob-
serve that the three curves practically overlap, thus cost reduction is not sensitive to
the values of k¥ we experimented with. However, if we decrease the slack so that the
deadline approaches f,,,y, SLA violations are more frequent. As expected, in this case,
higher values of k (for example 4 in our experiments) are beneficial for the provider,
as they limit the penalties owed to the user. The effect of the activation of SLA penal-
ties to the cost-optimal operating points is also negligible (middle column diagrams)
for both VS and FS. Once again, the dominant problem as we approach the PoFF is
the exponential increase of faults, rather than the cost of SLA violations. On the other
hand, we observe different optimal operation points for the VFS model when we apply
the SLA. VFS model also decreases the frequency along with the voltage, hence the
penalties start to occur even a few points below the highest nominal operating points.

For both VS and FS, the optimal operating points and the respective possible cost
reduction depend on the execution time of the task according, to the leftmost figures. A
lower execution time allows for more aggressive margins, as it reduces both the prob-
ability of a fault within the life of the task and the cost of the respective re-execution.

Finally, we study cost reduction when we apply protection mechanisms which can
detect and mask the effects of a percentage of errors. According to [14], such mecha-
nisms may mask up to 70 % of faults. As we observe, there is a limited improvement
in the optimal operating points for VS and FS, which however does not translate to a
measurable reduction of operator cost. However, those mechanisms are valuable in a
different way: they provide a margin where errors may be detectable, yet not catas-
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trophic for the system. In other words, they can provide observability to the fact that
the system approaches the problematic range. For the VFS model, failure rate for nom-

inal operating points is already very low, therefore protection mechanisms do not have
any measurable impact.

4 Related work

Dynamic voltage and frequency scaling (DVES) in cloud deployments has the poten-
tial to reduce power consumption and increase profit [11]. CloudScale [15] and Green-
Cloud [12] also apply DVFS to reduce the energy footprint of cloud applications and
infrastructure. CloudScale can, in addition, predict potential errors. In our work we
include voltage and frequency overscaling, two more aggressive techniques for sav-
ing energy. Although these techniques increase the probability of errors, we found
that there is a range of operating configurations which can minimize the cost for the
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cloud/edge provider, even when potential failures are taken into account.

The authors in [13] adopt dynamic voltage scaling to minimize energy consump-
tion on high-performance computing systems. The model described in [2] proposes
techniques that lower the supply voltage below nominal values, but also introduces
mechanisms that allow the system to recover from the resulting timing errors and re-
turn to a stable state. Both these works try to maximize the energy gains but they do
not consider the contractual QoS agreement (SLA) that the cloud/edge provider must
ahere to. Eventually, due to timing errors, the profit of energy saving can be reduced
by the SLA violation penalties.

The studies in [7, 8] introduce models that involve several QoS metrics, used in
the SLAs between the consumers and providers through a complete environment for
cloud applications. The resulting models focus on maximizing the provider profit while
taking into consideration SLA violation penalties. These works miss the opportunity of
further extending the infrastructure provider profit by exploiting either VFS or voltage
overscaling. In our work, we adopt both voltage and frequency overscaling and we
propose the respective models to estimate (and subsequently reduce) the cost to the
Cloud and Edge operator. Moreover, we take into account the potential SLA violation
penalties and highlight the optimal operating point (tradeoff between energy reduction
and QoS) that increases operator profit.

5 Conclusions

In this paper we studied three models which quantify the cost reduction potential for
cloud/edge operators by reducing the energy footprint of the infrastructure both with
conservative (VES) and more aggressive (VS, FS) techniques. All these techniques
may affect the provided QoS. We take into account penalties due to potential violations
of the contractually agreed QoS in cost estimation. Our study indicates that voltage
overscaling is the most effective way to reduce the cost. Although, frequency overscal-
ing does not reduce the cost significantly, it decreases the execution time of jobs and
may allow for additional operator profit by executing more jobs within a given time
window.

In this work we assume that nodes are homogeneous in terms of resources, energy
consumption and inherent resilience. Moreover, we assume that the energy cost is
constant in time and that we have only computational intensive tasks. However, real-
world cloud and — especially — edge infrastructure and workloads are heterogeneous
in all those aspects. Similarly, the cost of energy often varies in time. Taking into
account all these parameters, paves the ground for interesting scheduling and resource
management policies in cloud and edge deployments.

References

[1] D. Blaauw, S. Kalaiselvan, K. Lai, W.-H. Ma, S. Pant, C. Tokunaga, S. Das, and
D. Bull. Razor ii: In situ error detection and correction for pvt and ser toler-

10



(2]

(3]

(4]

(5]

(8]

(10]

(11]

[12]

[13]

ance. In Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical
Papers. IEEE International, pages 400-622. IEEE, 2008.

A. Cavelan, Y. Robert, H. Sun, and F. Vivien. Voltage overscaling algorithms for
energy-efficient workflow computations with timing errors. In Proceedings of the
5th Workshop on Fault Tolerance for HPC at eXtreme Scale, pages 27-34. ACM,
2015.

J. Daly. A Model for Predicting the Optimum Checkpoint Interval for Restart
Dumps, pages 3—12. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

J. T. Daly. A higher order estimate of the optimum checkpoint interval for restart
dumps. Future Gener. Comput. Syst., 22(3):303-312, Feb. 2006.

S. Das, D. Roberts, S. Lee, S. Pant, D. Blaauw, T. Austin, K. Flautner, and
T. Mudge. A self-tuning dvs processor using delay-error detection and correc-
tion. IEEE Journal of Solid-State Circuits, 41(4):792-804, 2006.

D. Dib, N. Parlavantzas, and C. Morin. Sla-based profit optimization in cloud
bursting paas. In Cluster, Cloud and Grid Computing (CCGrid), 2014 14th
IEEE/ACM International Symposium on, pages 141-150. IEEE, 2014.

D. Dib, N. Parlavantzas, and C. Morin. Sla-based profit optimization in cloud
bursting paas. In 2014 14th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, pages 141-150, May 2014.

S. Garg, S. Gopalaiyengar, and R. Buyya. Sla-based resource provisioning for
heterogeneous workloads in a virtualized cloud datacenter. Algorithms and Ar-
chitectures for Parallel Processing, pages 371-384, 2011.

A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The cost of a cloud: research
problems in data center networks. ACM SIGCOMM computer communication
review, 39(1):68-73, 2008.

S. Herbert and D. Marculescu. Analysis of dynamic voltage/frequency scaling
in chip-multiprocessors. In Low Power Electronics and Design (ISLPED), 2007
ACM/IEEE International Symposium on, pages 38—43, Aug 2007.

K. H. Kim, A. Beloglazov, and R. Buyya. Power-aware provisioning of cloud
resources for real-time services. In Proceedings of the 7th International Workshop
on Middleware for Grids, Clouds and e-Science, page 1. ACM, 2009.

D. Kliazovich, P. Bouvry, and S. U. Khan. Greencloud: a packet-level simulator
of energy-aware cloud computing data centers. The Journal of Supercomputing,
62(3):1263-1283, 2012.

Y. C. Lee and A. Y. Zomaya. Minimizing energy consumption for precedence-
constrained applications using dynamic voltage scaling. In Cluster Computing
and the Grid, 2009. CCGRID’09. 9th IEEE/ACM International Symposium on,
pages 92-99. IEEE, 2009.

11



[14] K. Parasyris, V. Vassiliadis, C. D. Antonopoulos, S. Lalis, and N. Bellas.
Significance-aware program execution on unreliable hardware. ACM Trans. Ar-
chit. Code Optim., 14(2):12:1-12:25, Apr. 2017.

[15] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. Cloudscale: elastic resource scaling
for multi-tenant cloud systems. In Proceedings of the 2nd ACM Symposium on
Cloud Computing, page 5. ACM, 2011.

[16] L. Tan, S. L. Song, P. Wu, Z. Chen, R. Ge, and D. J. Kerbyson. Investigating
the interplay between energy efficiency and resilience in high performance com-
puting. In Parallel and Distributed Processing Symposium (IPDPS), 2015 IEEE
International, pages 786—796. IEEE, 2015.

12



